
Alqalam Journal of Medical and Applied Sciences. 2026;9(2):441-447

https://doi.org/10.54361/ajmas.269221

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0

Received: 12-12-2025 - Accepted: 09-02-2026 - Published: 16-02-2026 441

Original article

Workload-Aware Energy-Efficient Query Scheduling for Cloud Database
Systems: Experimental Study

Salmi Tantoun1∗ , Anwar Alhenshiri2

1Department of Software Engineering, Faculty of Information Technology, University of Misurata, Misurata, Libya
2Department of Computer Science, Faculty of Information Technology, University of Misurata, Misurata, Libya

Corresponding email. slma.tantoun@it.misuratau.edu.ly

Abstract
Energy efficiency is a growing challenge in cloud database systems, particularly for analytical workloads with
intensive CPU and disk I/O demands. Traditional query scheduling strategies, such as First-Come First-
Served (FCFS) and Shortest Job First (SJF) focus on performance optimization and do not explicitly consider
energy consumption. This paper proposes an Energy-Driven Adaptive Scheduling (EDAS) strategy that

prioritizes queries based on estimated CPU and disk I/O costs without modifying the database engine.
Experiments were conducted on a cloud-based MySQL system using light, medium, and heavy workloads
derived from Sakila and TPC-H benchmarks. Results showed that energy-aware scheduling is workload-
dependent: SJF performed well under light and medium workloads, while EDAS achieved measurable energy
savings under heavy workloads and greater resilience under CPU throttling. The study demonstrates the
importance of workload-aware query scheduling for improving cloud database energy efficiency.
Keywords. Cloud Database Systems, Query Scheduling, Energy Efficiency, Workload-Aware Scheduling.

Introduction

Cloud computing has become the dominant platform for hosting modern data-intensive applications, and

relational database systems remain at the core of these environments. As organizations increasingly migrate

analytical and transactional workloads to the cloud, energy consumption has emerged as a critical

operational and environmental challenge. Data centers now account for a significant portion of global

electricity usage, and database servers are among the major contributors due to their continuous processing
and storage demands [1]. Consequently, improving the energy efficiency of database systems has become

an important research priority. Energy efficiency in cloud environments has traditionally been addressed at

the infrastructure level through techniques such as virtual machine consolidation, dynamic voltage and

frequency scaling, and energy-aware resource allocation [2]. While these methods reduce overall power usage,

they operate largely outside the database layer and do not consider the specific behavior of database

workloads. Recent research emphasizes that application-level and database-level optimizations are
necessary to complement infrastructure-centric approaches [3].

Within database systems, energy consumption is closely tied to workload characteristics and query

execution behavior. Analytical workloads, in particular, generate heavy CPU utilization and large volumes

of disk I/O, both of which have a direct impact on power usage. Experimental studies have shown that

different query plans and execution patterns can lead to significant variations in energy consumption, even
when processing the same data [4]. These findings suggest that query management decisions such as

execution order and scheduling can influence not only performance but also energy efficiency.

Despite this potential, most existing query scheduling strategies remain focused on traditional performance

objectives. Common approaches, such as First-Come First-Served (FCFS) and Shortest Job First (SJF) aim

to minimize response time or maximize throughput, without explicitly considering energy impact [5]. Energy-

aware scheduling has been extensively studied in operating systems and distributed computing, but
comparatively little attention has been given to energy-oriented scheduling at the database query level [6].

As a result, database administrators typically rely on performance-driven scheduling policies that may

unintentionally increase energy usage.

Another practical challenge arises from the nature of modern cloud platforms. Many widely used instance

types, such as the AWS T-series, employ CPU credit mechanisms that can throttle performance under
sustained load [7]. Under such conditions, the order in which queries are executed may have a substantial

impact on both execution time and energy consumption. However, the interaction between query scheduling

and CPU credit throttling remains largely unexplored in the literature. Furthermore, benchmarking

frameworks such as TPC-H provide standardized analytical workloads that are widely used to evaluate

database performance [8]. While these benchmarks are frequently employed for performance studies, they

are less commonly used to investigate energy efficiency or energy-aware scheduling behavior. This highlights
a gap between traditional database benchmarking practices and emerging sustainability concerns.

Motivated by these challenges, this paper investigates whether simple, application-level control over query

execution order can lead to measurable energy savings in cloud database systems. We propose an Energy-

Driven Adaptive Scheduling (EDAS) strategy that ranks queries based on lightweight estimates of CPU usage

and disk I/O intensity, without requiring any modifications to the underlying DBMS. By conducting
experiments on a cloud-hosted MySQL environment using workloads derived from Sakila and TPC-H, we

analyze how scheduling decisions affect energy consumption under different workload intensities. By

https://doi.org/10.54361/ajmas.2692
https://orcid.org/0009-0007-0485-8900
https://orcid.org/0009-0007-8825-7685

Alqalam Journal of Medical and Applied Sciences. 2026;9(2):441-447

https://doi.org/10.54361/ajmas.269221

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0

Received: 12-12-2025 - Accepted: 09-02-2026 - Published: 16-02-2026 442

focusing on query-level scheduling rather than low-level engine modifications, this study provides a practical

approach that can be adopted in real cloud deployments with minimal overhead. The results contribute to

the growing body of work on sustainable and energy-efficient database systems. To position this work within

the broader research landscape, it is important to review existing approaches to energy efficiency in cloud
and database systems.

Work on energy efficiency in cloud and database systems spans several complementary directions: (1)

infrastructure and VM-level energy management; (2) energy-aware database system design and query

optimization; (3) scheduling and task-level energy management in cloud environments; and (4) empirical

studies that profile I/O and CPU behavior of database workloads. Below, we summarize representative work

in each area and highlight the gap addressed by this paper.
Much of the early work on reducing datacenter energy consumption focused on resource consolidation, VM

placement, and power-aware resource allocation. Beloglazov and Buyya [2] proposed energy-aware

heuristics for VM allocation to reduce datacenter power use; Dayarathna, Wen, and Fan [1] surveyed data-

center energy models and emphasized the role of infrastructure controls (e.g., DVFS, cooling) in overall

energy cost. These infrastructure approaches are effective at the physical and VM layers but do not exploit
the database-level workload structure that can be controlled by query ordering or scheduling.

There is growing literature that directly targets energy efficiency within DBMSs. Guo et al [3] provided a

comprehensive survey of energy-efficient database techniques, including storage and query-plan

optimizations. Tsirogiannis et al [4] performed one of the first detailed measurements showing how query

plan choices translate into different energy footprints on a database server. Subsequent work has extended

profiling and modeling of per-operator and per-query energy costs, enabling optimizer-level decisions that
consider energy as an objective alongside latency or cost. In parallel, the operating systems and cloud

scheduling communities developed energy-aware schedulers and task allocation schemes. Meisner, Gold,

and Wenisch [9] introduced PowerNap to eliminate idle power at the server level; other works investigate

energy-aware workload placement and scheduling heuristics for large clusters and cloud platforms [6].

However, these techniques often operate at task/VM granularity and assume control over placement or
hardware settings; they are not directly applicable to DBMS-level query ordering without engine modification.

Research specifically on query scheduling within database systems highlights that execution order can affect

response time and fairness [10]. More recent studies analyze multi-class and priority-aware query execution

to meet QoS guarantees, but energy is typically not the primary objective. Work that examines query ordering

or admission control with resource heterogeneity suggests scheduling at the query level can influence system

resource contention and performance, which implies potential energy effects that remain underexplored in
practice [11]. Detailed workload characterization is essential to understanding when energy-aware

approaches will help. [12],[13] provide empirical analyses of I/O behavior and workload heterogeneity in

cloud storage and compute environments, demonstrating that analytical queries often produce bursty, high-

volume I/O that dominates energy consumption. These profiling studies strengthen the intuition behind

targeting scheduling policies to redistribute I/O-intensive queries and mitigate energy peaks.
Standard benchmarks such as TPC-H remain useful for reproducible evaluation of analytical workloads [8].

Complementary measurement frameworks and energy datasets (e.g., Cloud Carbon Footprint) provide

coefficients and methodology for translating utilization and I/O statistics into energy estimates when direct

power meters are unavailable [14]. Prior experimental DB-energy papers commonly adopt analytical models

or per-query estimators when full hardware instrumentation is infeasible [3]. Taken together, the literature

shows (a) infrastructure-level controls and VM scheduling reduce energy but do not exploit query semantics,
(b) DBMS-level energy-aware optimizations exist but often require internal engine changes or operator-level

instrumentation, and (c) task-level schedulers are promising but are not yet translated into practical, engine-

agnostic query ordering policies. Our paper targets this gap by proposing EDAS, an application-level

ordering heuristic that uses lightweight per-query CPU and I/O estimates to produce energy-aware

execution orders without modifying the DBMS. We evaluate EDAS experimentally on cloud MySQL and show
that it is particularly effective for heavy, I/O-dominated analytical workloads and under CPU-credit

throttling scenarios emphasized by both I/O characterization and cloud scheduling studies.

Methodology

Experimental Environment
The experiments were conducted on a cloud-based database platform hosted on Amazon Web Services
(AWS). A single EC2 t3. small instance was used as the experimental platform, configured with two virtual

CPUs, 2 GB of RAM, and Ubuntu 22.04 as the operating system. The database engine was MySQL 8.0,

deployed with default configuration parameters. All scheduling strategies were implemented externally at

the application layer to avoid any modification to the internal query optimizer or execution engine. This

design choice ensures that the proposed approach remains practical and deployable in real-world

environments without requiring changes to the DBMS source code. To minimize external interference, all
experiments were executed on an otherwise idle instance. Prior to each experimental run, operating system

caches were cleared to maintain consistency. Network latency effects were avoided by executing query

workloads locally on the same instance hosting the database server.

https://doi.org/10.54361/ajmas.2692

Alqalam Journal of Medical and Applied Sciences. 2026;9(2):441-447

https://doi.org/10.54361/ajmas.269221

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0

Received: 12-12-2025 - Accepted: 09-02-2026 - Published: 16-02-2026 443

Measurement and Monitoring
Accurate measurement of resource utilization is essential for evaluating energy-aware scheduling. During

query execution, per-query metrics were collected using the Python Psutil library, which provides lightweight

access to system-level performance counters. For each query, CPU utilization percentage, execution time, disk
read volume, and disk write volume were the recorded metrics.

These measurements were collected continuously throughout query execution and stored for subsequent

energy estimation. To validate the stability of system behavior, Amazon CloudWatch was used as an external

monitoring tool to observe instance-level CPU and disk activity trends during experiments. CloudWatch was

used only for validation purposes and not as part of the energy estimation process. All monitoring scripts

were executed on the same virtual machine as the database server to eliminate network-related
measurement overhead.

Database Workloads

To evaluate scheduling behavior under varying levels of resource intensity, three workload categories were

defined: light, medium, and heavy. The workloads were designed to reflect realistic database usage scenarios
with increasing computational and I/O complexity. Table 1 summarizes the main characteristics of the light,

medium, and heavy workloads used in the experiments.

Table 1. Characteristics of the Experimental Workloads

Workload Database
Number of

Queries
Query Characteristics

Light Sakila 15
Simple SELECT statements, minimal joins, low CPU and

I/O usage

Medium
TPC-H

(SF=0.1)
30

Moderate complexity queries with 2–3 table joins and
basic aggregations

Heavy
TPC-H

(SF=0.1)
30

Complex analytical queries with 4–6 table joins, nested

aggregations, GROUP BY, ORDER BY, HAVING

Using the same number of queries for both medium and heavy workloads ensure that observed differences

in energy consumption are primarily due to query complexity and resource demand, rather than workload

size.

Scheduling Strategies

Three query scheduling strategies were evaluated in this study, which are explained as follows:

1. First-Come First-Served (FCFS)

FCFS executes queries in the exact order in which they arrive. This strategy represents the default behavior

in many practical systems and serves as the primary baseline for comparison. FCFS does not consider query
complexity, execution time, or resource consumption.

2. Shortest Job First (SJF)

SJF prioritizes queries based on their estimated execution time, executing shorter queries before longer

ones. Execution time estimates were obtained from prior profiling runs under identical system conditions.

SJF is widely used as a performance-oriented scheduling policy and provides a strong baseline for
comparison against energy-aware approaches.

3. Energy-Driven Adaptive Scheduling (EDAS)

The proposed Energy-Driven Adaptive Scheduling (EDAS) strategy prioritizes queries based on their

estimated energy cost rather than execution time alone. EDAS is implemented as a static scheduling

mechanism that determines the execution order before workload submission.

For each query Qi, an energy score was computed as:

EnergyScore (Qi) = ∝ . 𝐶𝑃𝑈𝑐𝑜𝑠𝑡(𝑄𝑖) + 𝛽 . 𝐼𝑂𝑐𝑜𝑠𝑡 (𝑄𝑖) × 𝑇(𝑄𝑖)
Where:

- CPUcost (Qi) represents the estimated CPU intensity of the query,

- IOcost (Qi) represents estimated Disk I/O intensity,

- T(Qi) is the estimated execution time,

- ∝ = 0.4 and β= 0.6 are weighting parameters giving slightly higher importance to disk I/O.

The values of ∝ and β were chosen based on the observation that analytical database workloads are typically
more sensitive to disk activity than CPU utilization. Queries are sorted in ascending order of their energy

score, and execution follows this order. EDAS does not alter query execution plans; it only changes the order

in which queries are submitted to the DBMS, making it lightweight and easy to deploy.

https://doi.org/10.54361/ajmas.2692

Alqalam Journal of Medical and Applied Sciences. 2026;9(2):441-447

https://doi.org/10.54361/ajmas.269221

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0

Received: 12-12-2025 - Accepted: 09-02-2026 - Published: 16-02-2026 444

Energy Consumption Model

Direct measurement of hardware power consumption was not feasible due to a lack of physical

instrumentation. Therefore, an established analytical energy estimation model was adopted to compute per-

query and workload-level energy usage.

Server Energy Estimation
Server energy consumption is estimated using a linear CPU power model:

Eserver = (Pidle + (Pmax – Pidle) × Ucpu) × T
Where:

- Ucpu is the average CPU utilization during query execution,
- T is execution time,

- Pidle = 1.21W and Pmax = 9.96W are power coefficients obtained from the cloud carbon footprint

dataset.

Disk Energy Estimation
Disk I/O energy is estimated based on the volume of data transferred:

Edisk= (Dread+ Dwrite)× Ecoeff
where Ecoeff =0.1J/MB is a commonly used empirical coefficient for storage systems.

Total Energy
Total query energy is calculated as:

Etotal = Eserver + Edisk
Workload-level energy consumption is obtained by summing the energy of all queries within a workload.
This model provides consistent relative comparison across scheduling strategies, which is the primary

objective of this study.

Evaluation Metrics
Scheduling strategies were evaluated using two primary metrics:

1. Total Energy Consumption: The aggregated energy consumed by all queries in a workload,

computed using the model above.

2. Energy Savings (%): The relative reduction in energy consumption compared to the FCFS baseline:

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑎𝑣𝑖𝑛𝑔𝑠 =
𝐸𝐹𝐶𝐹𝑆 − 𝐸𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦

𝐸𝐹𝐶𝐹𝑆

× 100

These metrics allow direct comparison of how different scheduling strategies influence overall energy

efficiency. This methodology enables systematic evaluation of query scheduling strategies under controlled

and reproducible conditions. By combining realistic workloads, lightweight monitoring, and an established

energy estimation model, the study provides practical insights into when and how energy-aware scheduling

can benefit cloud database systems.

Because energy consumption was estimated using a deterministic analytical model and all experiments were
conducted on an otherwise idle system under identical conditions, result variability was minimal. For this

reason, formal statistical significance testing was not applied. Instead, consistency of trends across

workloads and scheduling strategies was used as the primary basis for comparison. Figure 1 illustrate the

overall methodology workflow for this experimental study.

Figure 1. Methodology Workflow.

https://doi.org/10.54361/ajmas.2692

Alqalam Journal of Medical and Applied Sciences. 2026;9(2):441-447

https://doi.org/10.54361/ajmas.269221

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0

Received: 12-12-2025 - Accepted: 09-02-2026 - Published: 16-02-2026 445

Results
This section presents the experimental results obtained from evaluating the three scheduling strategies,

FCFS, SJF, and EDAS, under light, medium, and heavy database workloads. The objective was to analyze
how different query execution orders influenced overall energy consumption and resource utilization in a

cloud-based database environment. All experiments were conducted under identical system configurations

to ensure fair comparison.

Results for Light Workload

The light workload consisted of 15 simple queries executed on the Sakila database, primarily involving basic

SELECT operations with minimal joins. This workload generated very low CPU utilization and negligible disk

I/O activity across all scheduling strategies. Under these conditions, total energy consumption remained

small, and differences between strategies were minimal. SJF achieved a slight reduction in energy

consumption compared to FCFS due to its prioritization of shorter queries. In contrast, EDAS resulted in
marginally higher energy usage. This behavior can be attributed to the limited opportunity for optimization

when queries are already lightweight and short-lived, as the overhead of energy-based ordering did not

translate into measurable gains. These observations indicate that when workloads exhibit very low resource

intensity, scheduling strategy has limited influence on energy efficiency, and traditional performance-

oriented approaches remain sufficient.

Results for Medium Workload

The medium workload consisted of 30 analytical queries derived from the TPC-H benchmark with scale

factor 0.1. These queries involved moderate joins and aggregation operations, resulting in sustained yet

balanced CPU and disk utilization. Under this workload, scheduling decisions began to have a measurable
impact on total energy consumption. Both SJF and EDAS achieved lower energy usage compared to the

FCFS baseline. Among the evaluated strategies, EDAS produced the lowest energy consumption, followed

closely by SJF. The improvement achieved by EDAS can be attributed to its ability to distribute resource-

intensive queries more evenly over time, thereby avoiding periods of concentrated I/O activity. Although

average CPU utilization remained similar across strategies, differences in execution order influenced the

temporal distribution of disk accesses, leading to variations in estimated energy consumption. Figure 2
illustrates the comparative total energy consumption for the medium and heavy workloads. As shown in the

figure, EDAS achieved the lowest energy usage in both cases, with the advantage becoming more pronounced

under the heavy workload.

Figure 2. Zoomed Energy Comparison for Medium and Heavy Workloads.

These findings suggest that for workloads of moderate complexity, energy-aware scheduling provides

tangible benefits, although the advantage over established heuristics such as SJF remains moderate.

Results for Heavy Workload

The heavy workload represented the most demanding scenario and consisted of 30 complex TPC-H queries

with multiple joins, large intermediate result sets, and extensive aggregation operations. This workload
generated sustained pressure on both CPU and disk subsystems. In this scenario, the impact of the

scheduling strategy became significantly more pronounced. EDAS achieved the lowest total energy

consumption among all evaluated strategies. Compared to FCFS, EDAS produced measurable energy

savings, whereas SJF resulted in the highest overall energy usage. The inferior performance of SJF under

heavy workloads indicates that minimizing execution time does not necessarily minimize energy

consumption. By prioritizing shorter queries, SJF postponed long and highly I/O-intensive queries, which
subsequently executed consecutively and created extended periods of high resource usage. In contrast,

https://doi.org/10.54361/ajmas.2692

Alqalam Journal of Medical and Applied Sciences. 2026;9(2):441-447

https://doi.org/10.54361/ajmas.269221

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0

Received: 12-12-2025 - Accepted: 09-02-2026 - Published: 16-02-2026 446

EDAS distributed such queries more evenly, reducing energy peaks and improving overall efficiency. These

results demonstrated that energy-aware scheduling was most effective when workloads contained complex

and heterogeneous CPU- and I/O-intensive queries.

Impact of CPU Credit Throttling

To evaluate behavior under realistic cloud constraints, an additional experiment was conducted under CPU

credit throttling conditions, which commonly occur on AWS T-series instances during sustained high

utilization. Under throttling, the behavior of the scheduling strategies changed noticeably. Both FCFS and

SJF experienced substantial increases in execution time and total energy consumption. Although SJF

achieved a slightly shorter makespan than FCFS, its energy advantage remained limited. EDAS
demonstrated superior performance under throttling conditions. By executing more energy-intensive queries

earlier and avoiding long sequences of heavy queries toward the end of execution, EDAS reduced the

duration of throttled operation. This resulted in both lower makespan and significantly reduced total energy

consumption compared to FCFS and SJF. Figure 3 compares the total energy consumption of the three

strategies under CPU credit throttling conditions and shows that EDAS consistently achieved the lowest

energy usage.

Figure 3. Total Energy Consumption under CPU Throttling

These findings highlight an important practical advantage of EDAS: in cloud environments where

performance may degrade dynamically due to platform-level constraints, energy-aware scheduling can also
contribute to improved robustness and predictability.

Discussion

The experimental results indicated that the impact of query scheduling on energy consumption was strongly

dependent on workload characteristics. Under light workloads, where queries generated minimal CPU and
disk activity, differences between scheduling strategies remained limited due to the dominance of baseline

server power consumption. In such scenarios, the choice of execution order had little practical influence on

total energy usage, which is consistent with prior studies emphasizing that scheduling effects become less

visible when resource demand is low.As workload complexity increased, the influence of scheduling became

more evident. For medium workloads, EDAS achieved moderate energy savings by distributing resource-

intensive queries more evenly over time. By reducing concentrated bursts of disk activity, EDAS lowered
energy peaks and improved overall efficiency compared to FCFS. These observations align with existing

research highlighting the role of workload heterogeneity and I/O behavior in shaping database energy

consumption. The benefits of EDAS were most pronounced under heavy analytical workloads. In these

scenarios, queries exhibited substantial variability in CPU and I/O intensity, and execution order

significantly influenced system behavior. Performance-oriented strategies such as SJF tended to postpone
longer and more complex queries, resulting in consecutive execution of highly intensive operations and

prolonged periods of elevated resource usage. In contrast, EDAS explicitly accounted for both CPU and disk

costs, leading to a more balanced execution pattern and lower total energy consumption. This outcome

reinforces the broader observation that minimizing execution time does not necessarily minimize energy

usage. The experiment conducted under CPU credit throttling conditions further demonstrated the practical

relevance of energy-aware scheduling in cloud environments. When sustained utilization triggered
performance constraints, FCFS and SJF experienced increased execution times and higher energy

consumption. EDAS reduced the duration of throttled operation by prioritizing more energy-intensive

queries earlier in the execution sequence, thereby improving both energy efficiency and system stability

under constrained conditions. Overall, the findings confirm that query ordering represents a practical and

https://doi.org/10.54361/ajmas.2692

Alqalam Journal of Medical and Applied Sciences. 2026;9(2):441-447

https://doi.org/10.54361/ajmas.269221

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0

Received: 12-12-2025 - Accepted: 09-02-2026 - Published: 16-02-2026 447

lightweight mechanism for improving the energy efficiency of cloud database systems. While the benefits

remain limited for lightweight workloads, the proposed approach proves particularly effective for complex,

I/O-dominated analytical scenarios. Although the study relied on an analytical energy estimation model and

a single cloud configuration, the consistent trends observed across workloads provide strong evidence that
application-level scheduling can meaningfully contribute to more sustainable cloud database operation.

Conclusion

This study examined whether query execution order can be used to improve energy efficiency in cloud

database systems. An Energy-Driven Adaptive Scheduling (EDAS) strategy was proposed and compared with

traditional FCFS and SJF scheduling approaches. Experimental results showed that the effectiveness of
energy-aware scheduling is strongly workload-dependent. For light workloads, scheduling strategy has

minimal impact on energy consumption. For medium workloads, EDAS provides moderate energy savings,

while for heavy analytical workloads, EDAS consistently achieved the lowest energy usage by distributing

CPU and I/O-intensive queries more effectively. The analysis under CPU credit throttling further

demonstrates that EDAS offers greater robustness in real cloud environments, reducing both execution time
and energy consumption when performance constraints occur. These findings confirm that lightweight,

application-level query scheduling can serve as a practical mechanism for improving the energy efficiency

of cloud databases without modifying the DBMS. Future work will focus on validating the approach using

direct power measurements, evaluating additional cloud platforms, and developing adaptive scheduling

techniques for dynamic workloads.

Conflicts of Interest

The authors declare no conflicts of interest.

References
1. Dayarathna M, Wen Y, Fan R. Data center energy consumption modeling: A survey. IEEE Commun Surv

Tutorials. 2015;18(1):732-794.
2. Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for efficient management of data

centers for cloud computing. Future Gener Comput Syst. 2012;28(5):755-768.
3. Guo B, et al. Energy-efficient database systems: A systematic survey. ACM Comput Surv. 2022;55(6):1-53.
4. Tsirogiannis D, Harizopoulos S, Shah MA. Analyzing the energy efficiency of a database server. In: Proceedings

of the 2010 ACM SIGMOD International Conference on Management of Data. 2010.
5. Xu Z, Tu YC, Wang X. Online energy estimation of relational operations in database systems. IEEE Trans

Comput. 2015;64(11):3223-3236.
6. Chen G, et al. Energy-aware server provisioning and load dispatching for connection-intensive internet services.

In: NSDI. 2008.
7. Amazon Web Services. Key concepts and definitions for burstable performance instances (CPU credits). 2024.

Available from: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-
concepts.html (docs.aws.amazon.com in Bing) [accessed 2025 Dec 21].

8. Transaction Processing Performance Council. TPC Benchmark H (TPC-H) standard specification. 2023. Available
from: http://www.tpc.org/tpch [accessed 2025 Dec 21].

9. Meisner D, Gold BT, Wenisch TF. Powernap: eliminating server idle power. ACM SIGARCH Comput Archit News.
2009;37(1):205-216.

10. Pang H, Carey MJ, Livny M. Multiclass query scheduling in real-time database systems. IEEE Trans Knowl Data

Eng. 1995;7(4):533-551.
11. González-Rodríguez M, et al. Study and evaluation of CPU scheduling algorithms. Heliyon. 2024;10(9).
12. Zou Q, et al. Characterization of I/O behaviors in cloud storage workloads. IEEE Trans Comput.

2023;72(10):2726-2739.
13. Ilager S, et al. A data-driven analysis of a cloud data center: statistical characterization of workload, energy and

temperature. In: Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing.
2023.

14. Cloud Carbon Footprint. Cloud Energy Coefficients Dataset. Available from: https://github.com/cloud-carbon-
footprint/cloud-carbon-footprint [accessed 2025 Dec 22].

https://doi.org/10.54361/ajmas.2692

