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Abstract 
This article sheds light on the mixed survival distribution, emphasizing its potential for describing 

the survival behavior of kidney failure patients under the stressors they encounter in their daily 
lives. The analysis focused on the mixed hazard function derived from the mixed survival 
distribution, with the parameters of the distribution and its associated functions estimated to 
better understand the behavior of the hazard function over time. A goodness-of-fit test was applied 

to evaluate how well the data fit the mixed distribution, while comparison criteria were employed to 
identify the most suitable distribution compared to classical models. The mixed hazard function 
was further compared with the Weibull hazard function. To illustrate its applicability, real data 
were used, representing the survival times to death for 153 patients at the Kidney Services Center 
in Al-Khums. The results revealed that the mixed distribution provided an excellent fit to the real 
data and outperformed the Weibull distribution in representing survival behavior. Moreover, the 
analysis showed that the hazard function increases over time, indicating a higher probability of 
death as the disease progresses. The hazard function curves for kidney patients at different stress 
levels (10%–99%) demonstrated that the probability of being at risk rises with time. At low stress 
levels (10%), the increase is gradual, whereas at high stress levels (95%), the risk grows 
substantially. This finding highlights stress as a significant factor that accelerates the rate of risk 
in kidney patients. Similarly, the cumulative hazard function across different survival periods 
showed that the accumulated probability of risk exposure increases with survival duration. The 
cumulative hazard function rises more rapidly at higher stress levels, while the increase is slower 
at lower stress levels. This indicates that the intensity of stress plays a clear role in accelerating the 
accumulation of risk among kidney patients. 
Keywords. Comparison  Criteria, Goodness-of-Fit Test,  Kidney Patients, Mixed Survival 
Distribution, Mixed Hazard Function. 

 

Introduction  
Kidney failure is the term used to describe the end-stage kidney disease, resulting from one or both 

kidneys failing or failing to perform their function effectively, which is to remove body waste and excess 
fluid. A healthy kidney removes waste and fluid from the bloodstream and excretes it in the urine [8]. The 

quality of the procedures used in statistical analysis depends largely on the assumed model or probability 

distribution. However, many problems remain, such as the fact that the distribution of real-world data 

does not follow any of the classical probability models. Therefore, several researchers have extensively and 

repeatedly discussed distributions in experimental statistical data to select the appropriate model and 

related issues in applied sciences such as the environment, medicine, engineering, modelling, and analysis 
of experimental data, but none of the studies have addressed the article of mixed hazard function in the 

presence of stressors that kidney failure patients are exposed to in their daily lives. 

It is well known that a kidney failure patient is exposed to stress during their daily lives due to the 

medication they take and the dialysis they undergo, all of which can impact their daily lifestyle. If we 

assume that P represents the probability that a kidney failure patient is able to handle such stressors so 
that they do not affect their daily lifestyle, and that q represents the complementary event, then in such 

cases, survival distributions are used to describe survival behaviour mathematically.  

The mixed survival distribution is an important statistical tool in studying the survival behavior of patients 

or systems. It is used to describe survival times when multiple components influence mortality or failure 

rates. This distribution is based on the assumption that data may arise from a mixture of different 

distributions, with each component reflecting the influence of a specific set of factors, such as 
environmental stressors or biological indicators [4], [6] . 

Based on the above, and given the stressors experienced by kidney failure patients, let us assume that the 

probability of the risk function remaining unchanged for kidney failure patients is P, and that the risk 

function will change with probability q. Then  follows the mixed hazard function is defined as :  

h(t)=pλ+(1-p)λt                         (1) 

Where λ represents the scaling parameter. When p =1 we get the constant hazard function for the 

Exponential distribution, and when p=0, we get the hazard function for the Weibull distribution.  

The basic idea is that data do not follow a single distribution, but can result from a mixture of different 

tributions. The hazard function is used to describe the instantaneous rate of failure or death at time t, dis

and it is a central tool for understanding survival behavior. The survival function represents the 
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point in time and is inversely related to the hazard  probability of an individual surviving to a certain

function. The flexibility of using the mixed distribution lies in its ability to represent complex situations, 

such as increasing risk over time or varying responses between individuals.  ients with In studying pat

chronic kidney failure, the mortality rate can be influenced by multiple factors such as age, biochemical 
markers, and daily stressors.  It is worth noting here that the mixed survival distribution used in this 

ctual hazard rate and determining how risks accumulate over time at article allows for estimating the a

different levels of influences. It is important to note that the hazard is not constant, but rather varies with 

entstime and the level of influences, which is important for kidney failure pati.  It also allows for 

ison of the performance of this distribution with traditional distributions such as the Weibull compar

distribution, providing a more accurate and realistic model of patient survival behavior. In addition to 
g accuracy compared to traditional distributions such as Weibull or exponential, providing higher modelin

the mixed distribution can more realistically represent survival data. Furthermore, it enables 

and their accumulation understanding of the impact of environmental factors or daily stressors on risk 

making by providing better information about the timing of medical -over time, supporting clinical decision

up based on predicted risks-interventions or patient follow .  
Therefore, this article will consider the stressors experienced by kidney failure patients using the mixed 

survival time distribution to demonstrate the pattern of the risk function under the stressors experienced 

by kidney failure patients throughout their lives. The importance of this article is highlighted compared to 

other studies on kidney failure, some of which used classical distributions such as the Exponential and 

Weibull distributions, and others used complex distributions such as the Weibull-Rayleigh distribution. 

However, this article sheds light on the mixed survival distribution, considering the stressors experienced 
by kidney failure patients in their daily lives. Therefore, the importance of the mixed survival time 

distribution is highlighted by its potential use in describing the survival behavior of patients with kidney 

failure under the stressors they experience in their daily lives. This research paper is divided into five main 

sections: The first section provides a general background on the mixed risk function in the presence of 

stressors experienced by kidney failure patients in their daily lives. The second section discusses related 
work. The third section presents the functions, derivations used, and the numerical solution algorithm. 

The fourth section discusses the results obtained. Finally, the fifth section presents the conclusions. 

There are several studies that have addressed the hazard function. For example, [2] studied longitudinal 

multivariate joint models and multivariate survival data, studied the association between failure times, 

and calculated the marginal and conditional survival functions from the multivariate survival model and 

applied them to a group of breast cancer patients. [3] Presented an article on the Generalized F-
distribution to estimate the survival function and hazard functions. The F-distribution was discussed 

using standard and constant alternatives using well-known statistical programs in this field, and 

improved descriptions of the risk of death after clinical AIDS diagnosis at four different periods of HIV 

treatment. [7] studied the three-parameter general Lindley distribution, which is a composite of the first 

and second gamma distributions. The properties of the hazard function were determined, and the three 
parameters were estimated using the maximum likelihood method. An algorithm was also proposed to 

generate random variables for this distribution. His practical application showed that the generalized 

Lindley distribution is a strong competitor to lifetime distributions such as gamma, Weibull, and natural 

logarithm. 

The last decade has witnessed a significant increase in studies employing statistical distributions and 

survival models to analyze data on kidney failure patients, with the aim of arriving at more accurate 
survival estimates and explaining differences between patients. For example, [5] used the Gompertz 

distribution to analyze clinical data on kidney failure patients, and the results showed that this 

distribution provided a good fit to survival data, especially in advanced stages of the disease. In a more 

recent study, [10] applied competing risk models to data on chronic kidney failure patients and confirmed 

that these models better reflect the multiple causes of death and failure among patients. 
[1] also presented an analysis using semiparametric survival models on dialysis patients, highlighting the 

role of clinical and biochemical variables in explaining differences between patients, providing more 

accurate information for predicting survival. On the other hand, [11] developed the Mixture Cure Model to 

account for the presence of subgroups of patients with long-term survival after kidney transplantation, 

demonstrating that mixed models are better at representing heterogeneous data than traditional models. 

In a more recent study, [12] used the Log-Logistic Distribution to analyze data on chronic kidney failure 
patients in China, and their results demonstrated that this distribution provides an accurate 

representation of survival data, especially in the early stages of the disease. 

 

Methods 
The hazard function is defined as the probability that an individual or system will fail in the interval (t, 

t+∆t), given that it has survived up to time t. In other words, the hazard function represents a conditional 

probability that describes the instantaneous risk of failure within a very small time interval (t1, t2). For a 

living organism, it reflects the instantaneous mortality rate of an individual who has survived until time t, 
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or equivalently, the probability that the survival process will terminate at time t. The hazard function is 

commonly denoted by h(t) and is mathematically expressed using the following formulas: 

 h(t)= 
F(t+∆t)-F(t)

S(t)
= 

f(t)

S(t)
 

The cumulative distribution function (CDF) of survival is defined as the probability that a patient dies 

before time t. It is denoted by F(t) and can be expressed mathematically as follows: 

F(t) = P(T ≤ t)=∫ f(u)
t

0
du  ;  t≥0 

The mixed risk function is defined as in Equation (1), and the mixed survival time distribution is defined 

using the following relationship: 

f(t)=h(t)e- ∫ h(t)dt
t

0                             (2) 

Where h(t) is defined as in Equation (1). By substituting  Equation (1) into  Equation (2), the distribution 

of the residence time is as follows: 

f(t)=[pλ+(1-p)λt]e-(pλt+0.5 (1-p)λt
2
)            (3)   

The parameters of the mixed distribution defined by  Equation (3) were estimated by following the 

following steps: 
If we assume that t1,t2,t3,……….tn a random sample of survival times has a survival time distribution 

defined by  Equation (3), then the maximum likelihood function is given as follows: 

L= ∏ f(ti/λ,p)=λ
n
. (∏(p+(1-p)ti)

m

i=1

) e- λ ∑ (pti+0.5 (1-p)ti
2)n

i=1  

n

i=1

 

Taking the logarithm of L, we get 

 lnL=n lnλ + ∑ ln (p+(1-p)ti)
n
i=1  -λ ∑ (pti+0.5 (1-p)ti

2)n
i=1      

If we assume that the parameter p is known and the parameter λ is unknown, then we will estimate the 

parameter λ by taking the derivative of the function (lnL) with respect to λ and setting it equal to zero, we 

obtain the maximum likelihood value of the parameter λ as follows: 

  λ̂=
n

∑ [pti+0.5(1-p)ti
2
)]n

i=1

          

If we assume that the parameter λ is known and the parameter p is unknown, then we will estimate the 

parameter p  by taking the derivative of the function (lnL) with respect to p  and setting it equal to zero, we 

obtain the maximum probability value of the parameter as follows: 

∑ [
1

p̂+
ti

1-ti

] -
λ

2

n

i=1

 ∑ ti

n

i=1

(2-ti)=0                      (4) 

Due to the difficulty of solving Equation (4), one of the Newton-Raphson methods will be used to estimate 

the parameter p, by following the following steps:  

let us assume that 

g(p0)= ∑ [
1

p̂+
ti

1-ti

] -
λ

2

n

i=1

 ∑ ti

n

i=1

(2-ti)=0     

The steps of the Newton-Raphson method depend on assuming an initial value for the required root using 

the ordinary least squares (OLS) method, let it be (p0=pj), and then determining approximate roots for the 

parameter (p) as in the following equation: 

 p̂=p
j+1

=po-
g(po)

g̀(po)
                                                       (5) 

The initial value pois substituted in equation (5) and we continue applying Equation (5) and substitutin po 

to get a new value, let it be, p1, and then we assume that it is the initial value p1 and we continue until we 

reach the stage (j+1) when it approaches the required degree of accuracy, and thus we get a value for the 

parameter (p) such that the difference is as small as possible [9]. Using the stability property of the 

maximum likelihood estimator, we obtain the estimator of the mixed hazard function h(t) and the 

estimator of the survival function R(t), as follows: 

ĥ(ti)=pλ̂+(1-p)λ̂ ti                    

Ŝ(ti)=e
-(λ̂pti+

1
2
(1-p)ti

2) . 
 

Results  
This article used a sample of 153 patients with renal failure, 87 males and 66 females. The causes of renal 

failure varied among several primary factors, including hypertension, which appeared in 43 cases, 

diabetes, which was recorded in 32 cases, and a combination of diabetes and hypertension in 15 cases. 

Genetic causes, such as polycystic kidney disease, were also present in 22 cases. Other diverse causes 

included immune rejection of transplanted kidneys, congenital urinary tract diseases, and other factors. 
The duration of dialysis for the patients ranged from 6 days to 7,630 days (approximately 250 months). 
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The data were fitted to the mixed survival distribution function using the Kolmogorov-Smirnov test to 

ensure that the research data follow the mixed survival distribution at different values of the parameter λ. 

The results of (Table 1) showed that the value of the Kolmogorov-Smirnov test statistic is less than the 

critical value (0.13178) at a significance level of 0.01 at different values of the parameter λ. Therefore, it 
can be said that the research data follow the mixed survival distribution. 

 

Table 1. Goodness-of-Fit Test Results for Mixed Survival Distribution 

K-S test P̂ λ̂ P0 λ0 N # 

0.0636571 0.0683 0.0267 0.08 0.003 153 1 

0.0636571 0.0683 0.0267 0.1 0.003 153 2 

0.0562024 0.27 0.0326 0.2 0.01 153 3 

0.0562024 0.27 0.0326 0.3 0.01 153 4 

0.0486749 0.807 0.0798 0.4 0.05 153 5 

0.0486749 0.807 0.0798 0.5 0.05 153 6 

0.0486749 0.807 0.0798 0.6 0.05 153 7 

0.0388659 0.96 0.1355 0.7 0.10 153 8 

0.0388659 0.96 0.1355 0.8 0.10 153 9 

0.0388659 0.96 0.0434 0.9 0.10 153 10 

 

The maximum likelihood estimators for the mixed survival time distribution were found as shown in (Table 

2). From (Figure 1), it was observed that when a kidney failure patient was able, with a percentage ranging 
from 10% to 90%, to handle the daily life stresses resulting from his illness, the mixed survival time 

distribution began to increase during the first months of the disease and then decreased with a slope to 

the right. There is an inverse relationship between the survival function and the survival time, i.e., the 

longer the survival time, the lower the value of the survival function. Therefore, the older the patient, the 

lower his survival rate. This matches the behavior of the survival function, as it decreases with time. 
(Figure 2) shows that the cumulative distribution function for the mixed survival time is an increasing 

function. 

 

Table 2. Estimate of Mixed Survival Time Distribution 

f(t) λ̂ P̂ N # 

(0.002+0.012t) e-(0.002t+0.006t2) 0.0267 0.0683 153 1 

(0.002+0.012t) e-(0.002t+0.006t2) 0.0267 0.0683 153 2 

(0.009+0.023t) e-(0.009t+0.012t2) 0.0326 0.27 153 3 

(0.009+0.023t) e-(0.009t+0.012t2) 0.0326 0.27 153 4 

(0.064+0.015t) e-(0.064t+0.008t2) 0.0798 0.807 153 5 

(0.064+0.015t) e-(0.064t+0.008t2) 0.0798 0.807 153 6 

(0.064+0.015t) e-(0.064t+0.008t2) 0.0798 0.807 153 7 

(0.130+0.005t) e-(0.130t+0.002t2) 0.1355 0.96 153 8 

(0.130+0.005t) e-(0.130t+0.002t2) 0.1355 0.96 153 9 

(0.042+0.002t) e-(0.042t+0.001t2) 0.0434 0.96 153 10 
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Figure 1. Mixed Survival Time Distribution 

 

 
Figure 2. Cumulative Distribution Function Mixed Survival 

Time Distribution 
The maximum likelihood estimators for the mixed survival function were found as shown in (Table 3). 
From (Figure 3), there is an inverse relationship between the survival function and survival time. That is, 

the longer the survival time, the lower the survival function value. Therefore, the older the patient, the 

lower their survival rate. This is consistent with the behavior of the survival function, which is decreasing 

over time. 

 

Table 3. Estimating The Mixed Survival Function 

S(t) λ̂ P̂ N # 

 e-(0.002t+0.006t2) 0.0267 0.0683 153 1 

 e-(0.002t+0.006t2) 0.0267 0.0683 153 2 

 e-(0.009t+0.012t2) 0.0326 0.27 153 3 

 e-(0.009t+0.012t2) 0.0326 0.27 153 4 

e-(0.064t+0.008t2) 0.0798 0.807 153 5 

e-(0.064t+0.008t2) 0.0798 0.807 153 6 

e-(0.064t+0.008t2) 0.0798 0.807 153 7 

e-(0.130t+0.002t2) 0.1355 0.96 153 8 

e-(0.130t+0.002t2) 0.1355 0.96 153 9 

e-(0.042t+0.001t2) 0.0434 0.96 153 10 
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Figure 3. Mixed Survival Function 

 

The maximum likelihood estimators for the mixed hazard function were found, as shown in (Table 4). 

From (Figure 4), it was observed that when a kidney failure patient is 10% to 99% able to handle the daily 

stresses of their disease, the hazard function increases with time. This means that the patient is at risk of 
death during the final weeks of dialysis. This indicates that the hazard rate increases with time, as the 

hazard function is directly proportional to time. This means that the longer the patient lives, the greater 

the risk to the patient's life. The curves show that the hazard function starts low at the initial time and 

gradually increases with the duration of the disease, indicating that the probability of risk exposure to risk 

increases over time. It also appears that the slope of the lines varies according to the stress levels, as the 

increase in risk is slow at low stress levels (p=0.1) while it increases significantly at high stress levels 
(p=0.95). This reflects that stress is an influential factor that contributes to accelerating the risk rate in 

kidney patients. 

 

Table 4. Estimation of The Mixed Hazard Function 

h(t) λ̂ P̂ N # 

(0.002+0.012t) 0.0267 0.0683 153 1 

(0.002+0.012t) 0.0267 0.0683 153 2 

(0.009+0.023t) 0.0326 0.27 153 3 

(0.009+0.023t) 0.0326 0.27 153 4 

(0.064+0.015t) 0.0798 0.807 153 5 

(0.064+0.015t) 0.0798 0.807 153 6 

(0.064+0.015t) 0.0798 0.807 153 7 

(0.130+0.005t) 0.1355 0.96 153 8 

(0.130+0.005t) 0.1355 0.96 153 9 

(0.042+0.002t) 0.0434 0.96 153 10 

 

 
Figure 4.  Mixed Hazard Function 
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Maximum likelihood estimators for the mixed cumulative hazard function were found, as shown in (Table 

5). (Figure 5) shows a direct relationship between the mixed cumulative hazard function and survival time. 

This means that the longer the survival time, the higher the value of the mixed cumulative hazard 

function. Therefore, the older the patient, the greater the risk to their life and the greater their risk of 
death. It appears that the function starts low and then increases exponentially over time, reflecting that 

the accumulated probability of risk exposure to risk increases with survival time. The curves also differ 

according to the levels of stress, with the cumulative hazard function rising faster at high levels (p=0.95, 

p=0.9), while the increase is slower at low levels (p=0.1, p=0.3). This suggests that the severity of stress 

clearly contributes to accelerating the accumulation of risk in kidney patients. 

 
Table 5. Estimate of The Mixed Cumulative Hazard Function 

H(t) λ̂ P̂ N # 

(0.002t+0.006t2) 0.0267 0.0683 153 1 

(0.002t+0.006t2) 0.0267 0.0683 153 2 

(0.009t+0.012t2) 0.0326 0.27 153 3 

(0.009t+0.012t2) 0.0326 0.27 153 4 

(0.064t+0.008t2) 0.0798 0.807 153 5 

(0.064t+0.008t2) 0.0798 0.807 153 6 

(0.064t+0.008t2) 0.0798 0.807 153 7 

(0.130t+0.002t2) 0.1355 0.96 153 8 

(0.130t+0.002t2) 0.1355 0.96 153 9 

(0.042t+0.001t2) 0.0434 0.96 153 10 

 

 
Figure 5. Mixed Cumulative Hazard Function 

 

The parameters of the Pareto, Pareto (2P), Weibull, Cauchy, Dagum, Exponential (2P), and Gamma 

distributions were estimated using the maximum likelihood method using the Easy-Fit program. These 

distributions were applied to real-world data on survival times for patients with kidney failure. The data 
were fitted to the Pareto, Pareto (2P), Weibull, Cauchy, Dagum, Exponential (2P), and Gamma 

distributions. Comparison criteria were also used to compare the distributions to select the best 

distribution representing the article data. The results are shown in (Table 6). The data were fitted to some 

classical distributions (Pareto, Pareto (2P), Weibull, Cauchy, Dagum, Exponential (2P), Gamma) using the 

Kolmogorov-Smirnov test to ensure that the research data follow these distributions. Based on the results 
of (Table 6), it was found that the value of the Kolmogorov-Smirnov test statistic is less than the critical 

value (0.13178) at a significance level of 0.01. Therefore, it can be said that the research data follow 

classical distributions (Pareto (2P), Weibull, Dagum, Exponential (2P), Gamma), and do not follow the 

classical distributions (Pareto, Cauchy). Based on the results of the Akaike Information Criterion (AIC) and 

Modified Akaike Information Criterion (MAIC) shown in (Table 6), it was found that the two-parameter 

Weibull distribution best represents the research data, as its comparison criteria values were lower than 
those of other distributions. 
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Table 6. Estimating the Parameters of Some Classical Distributions,  

Goodness-of-Fit Test Results and Comparison Criteria Between Classical Distributions 

# Distribution Parameters KS  test Decision AIC MAIC 

1 Cauchy σ = 2.24 , μ = 0.3 0.21009 Reject - - 

2 Dagum 
κ = 0.44 , α = 1.99 , β

= 7.34 
0.04811 Accept 863.641 863.694 

3 Exponential λ = 1.17 0.08112 Accept 857.211 857.237 

4 Exponential (2P) λ = 0.17, γ = 0.02 0.08207 Accept 858.211 858.181 

5 Gamma α = 0.83 , β = 7.27 0.04796 Accept 858.141 858.100 

6 Pareto α = 0.20 , β = 0.02 0.37727 Reject - - 

7 Pareto-2P α = 7.36 , β = 38.4 0.04852 Accept 857.296 857.366 

8 Weibull α = 0.92 , β = 5.63 0.04645 Accept 857.166 857.206 

 

The maximum likelihood estimators of the hazard function were found. The results are shown in (Table 7). 
and through (Figure 6), it was shown that the hazard function increases with time. That is, the hazard 

function begins to increase during the first weeks of dialysis and then begins to rise until it reaches its 

maximum value. This means that the patient is at risk of death during the last weeks of dialysis. This 

indicates that the risk rate increases with time, as this function is directly proportional to time. This 

indicates that the longer the survival time of the disease, the greater the risk to the patient's life. There is a 

direct relationship between the mixed cumulative hazard function and survival time. That is, the longer 
the survival time, the higher the value of the mixed cumulative hazard function. Therefore, the older the 

patient, the greater the risk to the patient's life and the risk of death.   

 

Table 7. Estimation of The Hazard Function  
and Cumulative Hazard Function for the Weibull Distribution 

Estimated functions   functions  

0.16 (
t

5.6
)

-0.08

 Hazard function 

(
t

5.6
)

0.9

 Cumulative hazard function 

  

 
Figure 6. The Weibull Distribution Hazard Function and The Cumulative 

Hazard Function 
 

The comparison between the mixed hazard function and the Weibull distribution hazard function was 
conducted using mean square error. The results of (Tables 3-17, 3-18, and 3-19) reveal that the mean 

square error for the mixed hazard function is less than the mean square error for the Weibull distribution. 

This indicates that the mixed distribution is a better representation of the research data than the Weibull 

distribution. 
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Tables 8. Mean Squared Error for The Mixed Hazard Function 

MSE(h(t)) λ̂ P̂ 0P 0λ N # 

7.6299 x 10-26 0.0267 0.0683 0.08 0.003 153 1 

7.6054 x 10-26 0.0267 0.0683 0.1 0.003 153 2 

7.6544 x 10-26 0.0326 0.27 0.2 0.01 153 3 

7.6238 x 10-26 0.0326 0.27 0.3 0.01 153 4 

1.7112 x 10-21 0.0798 0.807 0.4 0.05 153 5 

1.7113 x 10-21 0.0798 0.807 0.5 0.05 153 6 

1.7113 x 10-21 0.0798 0.807 0.6 0.05 153 7 

4.5723 x 10-19 0.1355 0.96 0.7 0.1 153 8 

4.5724 x 10-19 0.1355 0.96 0.8 0.1 153 9 

4.5724 x 10-19 0.0434 0.96 0.9 0.1 153 10 

 
Table 9. Mean Square Error of The Weibull Distribution 

MSE(h(t)) Function 

2.000 x 10-7 h(t)=0.16 (
t

5.6
)

-0.08

 

 

Discussion 
This article used a sample of 153 patients with kidney failure. The data were fitted to a mixed survival 

distribution. Estimating the mixed survival time distribution revealed that when a kidney failure patient 

was 10% to 90% able to cope with the daily stresses of their disease. The combined hazard function was 
found to be directly proportional to time, and the stressors experienced by the patient significantly 

accelerated the risk rate in kidney patients. This means that the longer the patient lived, the greater the 

risk to their life. The curves of the mixed hazard function showed that the slope of the lines varied 

according to the stress level, with the increase in risk being slow at low stress levels and increasing 

significantly at high stress levels. 
Estimating the mixed cumulative hazard function, it was found that the severity of the stressors 

experienced by the patient clearly contributed to the acceleration of the risk accumulation in kidney 

patients. That is, the longer the survival time, the higher the value of the mixed cumulative hazard 

function. Therefore, the older the patient, the greater the risk to their life and the greater the risk of death. 

The mixed cumulative hazard function curves showed that the slope of the lines varied according to stress 

levels, with the cumulative hazard function rising faster at high levels and slower at low levels. To 
demonstrate that the mixed distribution outperformed classical distributions, the data were fitted to 

classical distributions. The results of the comparison criteria indicated that the Weibull distribution was 

the optimal distribution for the data. However, this distribution was not superior to the mixed distribution, 

as demonstrated by comparing the mixed hazard function and the Weibull hazard function using the 

mean square error. 
Accordingly, this article presents a mixed distribution that illustrates the behavior of the risk function for 

kidney failure patients, taking into account the stressors of illness and the psychological pressures that 

kidney failure patients experience in their daily lives. It is worth noting that most studies have not used 

the mixed distribution in medical studies, and not all studies have examined the association between the 

mixed distribution and the stressors that kidney failure patients experience. We hope that this article will 

be a starting point for new research that goes beyond the use of distributions alone, but also takes into 
account the psychological aspects of patients. 

 

Conclusion 
This article discusses the use of the mixed survival distribution to describe the survival behavior of kidney 
failure patients, taking into account the stressors they face in their daily lives. It analyzes the associated 

hazard function and compares it to classical distributions, particularly the Weibull distribution. The 

sample included data from 153 patients at the Kidney Services Center in Al-Khums. The results showed 

that the mixed distribution provides a better fit to real-world data than the Weibull distribution, as the 

hazard function increased over time, reflecting a higher probability of death, while the survival function 

decreased. The analyses also showed that daily stress levels are an influencing factor that accelerates and 
accumulates the hazard rate, with the escalation being gradual at low stress levels and steep at high 

stress levels. The study concludes that the mixed distribution is more accurate and realistic in 

representing survival behavior and recommends its use in similar studies and conducting additional 

analyses on different types of data to test the generality of the results. 
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